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1. INTRODUCTION AND NOTATION

Let nand q be given natural numbers such that n + 1 ~ q > 0 (n > 0). By
I we denote the unit interval [0, 1] and LIn is an arbitrary but fixed partition
of the interval I:

By Sp(2q - 1, LIn) we denote the space of polynomial splines of degree
2q - 1, deficiency 1, and knots Xi (i = 0, 1,..., n). Thus s E Sp(2q - 1, LI n) if
and only if

(i) in each interval [xi_l,xd (i=1,2,...,n) s coincides with an
algebraic polynomial of degree 2q - 1 or less,

(ii) s E C 2q
-

2 (I).

It is known that Sp(2q - 1, LIn) is a linear subspace of the space C(I) and
dim Sp(2q - 1, 11 n ) = n + 2q - 1 (cf. [1 D. In the sequel we will assume that
each element s from the space Sp(2q - 1, LI n) satisfies additionally some
boundary conditions

(j = 1, 2,..., q - 1), (1.1 )

or

(j = 2, 4,..., 2q - 2). (1.2)

The conditions (1.2) are called Lidstone-type conditions (cf. [8 D.
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It is known (see, e.g., [1 J) that for given real numbers h (i = 0, I,... , n)
there exists exactly one s E Sp(2q - I,A n ) interpolating the datah' i.e.,

(i = 0, 1,... , n), (1.3)

jointly with the boundary conditions (l.l) or (1.2) (cf. [I J).
Every such spline function s may be written in the Lagrange form

n

s(x) = ~ hS;(x)
;=0

(x E I),

where s; E Sp(2q - 1, An)' s;(x) = J;j (i,j = 0, 1,..., n) and every function s;
satisfies the boundary conditions (1.1) or (1.2). The functions s; are the so­
called fundamental spline functions. They play an important role in our
further considerations. Consider the operator P~q -I defined by

n

(P~q-1)(x) = ~ f(x;) s;(x)
;=0

(fE C(I)). (1.4 )

It is obvious that P~q-l is a linear, bounded and idempotent map from C(l)
onto Sp(2q - 1, An); thus p~q-I is a projection.

Let 11·110: stand for the sup-norm in the interval I. The inequality

is well known (here f E C(I)). The operator norm II ·11 is defined in the usual
way,

IIP~q-'11 = sup IIP~q-111:x:'
11/1100';;1

From this inequality we see that the knowledge on the size of the norm P~q-I

is important.
In this paper we will give some results concerning the norms of the

projections p~q-I. We continue our earlier investigations from [22J, where
the natural boundary conditions were imposed on the spline function
s == P~q- 'f For other results for the non-periodic boundary conditions see
[2-4, 12, 29). In the case of the periodic boundary conditions (i.e., such that
S<.il (0) = sVl (l) for j = 0, I,..., 2q - 2) many results are known up to date (see
[6, 12-20, 24-28 J).

In Section 3 the cubic case (q = 2) is treated assuming the boundary
conditions (1.1). For the second type boundary conditions some results are
given in the above-mentioned paper [22 J. Estimations from above for II P~ II
(for arbitrary knots) and explicit formulae for these norms for equidistant
knots are given. In the final section the uniform upper bounds for II P~ II are
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derived (in the case of equidistant knots). The interpolant p~J satisfies the
boundary conditions (1.1) or (1. 2).

For the related results concerning the norm of some quadratic spline
projections, see, [3, 7, 10, 11, 19, 20, 23-25, 291.

2. LEMMAS

For our further aims we define the bi-infinity sequence {d;l in the
following manner: d_i=O, do= 1, dl =4, di+1=4di -di_1 (i= 1,2,... ).

LEMMA 2.1. IJ the numbers di are defined as above, then

did,-di_1d'+1 =d'_i

= -di-,-z

if °~ i ~ 1+1,

if i~l+ 1.

Proof. Since dm= [(2 + (3)I/Z)m+ 1- (2 - (3r12 )m+ 1l/(2(3)112) (m =
-1, 0,... ), then the desired result follows by direct calculations. I

Let (Ji, _I = (JiO = (Jin = (Ji,n +1 = 0, and

(Ju = (_I)i +j dj_I dn- i_I /dn_I (j ~ i),

_ i+i- (-1) di_ldn_j_l/dn_1 (j~ i)

(i,j= 1,2,... , n - 1). (2.1)

We have the following

LEMMA 2.2. IJ the numbers mJI) are such that

(i) (I) (i)
mj_1+ 4mj + mj+ 1 = 3n(&j+ I,i - &j-I,i)'

m~1) = m~1) = ° (i = 0, 1,..., n; j = 1,2,..., n - 1),

then

(2.2)

mJI) = (_I)i+ j+1 3n dj_l(dn_i - dn-i-Z)/dn-J (j < i),

= 3n(di_1dn- i- z - di-zdn_i_I)/dn_1 (j = i),

= (_I)i+j 3n dn_j_l(di - di_Z)/dn_ 1 (j> i)

(i = 0, 1,..., n; j = 1,2,..., n - 1). (2.3)

Proof. It is known (see, e.g., [21]) that the matrix of the above linear
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system (2.2) possesses an inverse with entries {Ju given by (2.1). By virtue of
(2.2) we have

my' = 3n(fJi.I_1 -{Ji,i+I)'

Hence and from (2.1) we obtain the desired result (2.3). •

LEMMA 2.3. Let XI = i/n, Sl E Sp(3,Lt n) (i = 0,1,... , n) and let each
fundamental spline function s I satisfy the boundary conditions (1.1) for q = 2.
If X E (xi -l' Xj) U = 1,2,..., n), then

sgn SI(X) = (-1 )i+i

= (_l)l+i+ I

U ~ n,
U> i)

(i = 0, 1,..., n;j = 1,2,... , n). (2.4)

The proof of (2.4) follows immediately from Theorem 2 (Part I) in
[5].•

3. CUBIC CASE

For the sake of brevity we introduce more notation. Let hj = xj - xj _ 1

U= 1,2,..., n), h = maxI<j<n hj' a = max1H1=1 h;/[hj(h l + hj)]'
Our first result is contained in the following

THEOREM 3.1. Let the knots XI be arbitrary, (P~f)(xJ=f(x/)
(i=O, 1,...,n) and (P~f)'(O)=(P~f)f{l)=O. Then

IIP~II ~ 1 + ~ah, (3.1)

where a and h are defined as above.

The proof is quite similar to that of [6, Theorem 1]. For this reason it is
omitted. •

From (3.1) we have the following

COROLLARY 3.1. For equidistant knots we have IIP~II ~ i.
Now we shall give an explicit formula for the norm of the projection P~ in

the case of equidistant knots. Let

n

A~q-I{x) = L Is/(x)\
/=0

(X E I), .
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denote the so-called Lebesgue function for the projection P~q - I. It is known
that IIP~q-111 = riA ~q-liloo' From this equality it follows that for our aims we
must have more information on the functions SI' Let ml/) = s;(xi )

(i, 1=0, 1,... , n). By virtue of our assumptions we have m~/) = m~/) = 0 for all
I. If xE [xi-l'xd (i= 1, 2,... , n) and if knots Xi are equidistant, then each
fundamental spline SI(X) may be written as

SI(X) = c5 i _1.I4>0(x) + c5i/4>o(1- x) + ml~ 14>1(x) - ml/) 4> I(1 - x)

(1=0, 1,...,n;xE [Xi _l'xl ];i= 1,2,...,n-I), (3.2)

where

4>o(x) = (1 + 2t)(1 - t)2,

4>1(X) = t(1 - t)2/n, t = n(x - XI-I)'
(3.3)

(see, e.g., [1,6]). If x E [xl_l,xd, then 4>o(x), 4>o(1-x), 4>1(X),
4>1(1 - x) ~ 0, and

4>o(x) + 4>0(1 - x) = 1,

4>1(X) + 4>1(1 - x) ~ 1/4n.

With the help of Lemma 2.3 and (3.2) one can prove

A~(x)= 1 +a/.n4>I(X)-PI,n4>I(I-x)

(x E [XI-I' xd; i = 1,2,..., n),

where

I-I n

a =" (_1)1+1+ 1 m !/) +)' (_1)1+1 m(/)i.n ~ ,-I ~ i-I'
1=0 1=1

I-I n

Pi.n = L (-1)/+/+1 ml/) + I (_1)1+1 m:/).
/=0 1=/

By virtue of (2.3) the above formulae simplify to

(3.4)

(i = 1,2,..., n).
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Thus if x E [x; -I' X;], then the Lebesgue function A ~(x) may be written as

6
A~(x) = 1 +d [a;(1 - t) + bit] t(1 - t)

n-I

where

(t = n(x - Xi_I); i = 1,2,.." n), (3.5)

a; = d;_idn_;_1 + dn_;),

b; = dn-i-l(di-2 +d;_I) (i = 1,2,... , n).
(3.6)

Let A; = maxxl_,<x<xIA~(x) (i = 1,2,... , n). From (3.5) and (3.6) we see that
A~(x) = A~(1 - x). Hence A; = An+ 1_; (i = 1,2,... , n).

THEOREM 3.2. Let x; = i/n, (P~f)(Xi) = f(x;) (i = 0, 1,..., n),
(P~f)'(O) = (P~f)/(I) = O. Then

IIP~II=I+2d3 dj_1(dj_l+d) ifn=2j+l U=O,I, ... ),
,,-1

2
= 1 + -d- [2153/2 + (3 - (5)(2aj + 1)] if n = 2j U = 1,2,... ),

9 ,,-1

where aj is defined in (3.6) and 15 = aJ + aj + 1. Moreover,

if n = 2j + 1,

and

if n = 2j.

Proof According to Lemma 2.1 we have, by virtue of (3.6),

= -(d2;-n_1 +d2i - n - 2)

if 2i ~ n,

if 2i + 1~ n.
(3.7)

Now we consider two cases. Let

1°. n = 2j + 1 (j = 0, 1,... ). By virtue of (3.6) and (3.7) one gets

<0

if i = 1, 2,...,j,

if i = j + l,j + 2,..., n,
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Thus

<0

if i = 1, 2,...,j,

if i=j+l,j+2,... ,n.

(3.10)

and (3.8)

Moreover, aj+ 1= bj+ I'
By virtue of (3.5) and (3.8) we have

IIP~II = max A~(x) =A~ (-2
1

) = 1+ 2d
3

dj_,(dj_ , +dj).
Xj',;'X<Xj+l n-l

2°. n = 2j (j = 1,2,... ). Similarly to the previous case we can prove

and (3.9)
b, < b2 < ... <bj ; bj > bj+, > ... > bn·

Moreover, aj=bj+, and aj+,=bj . Hence IIP~II=maxxj-I<x<xjA~(x)=
A ~(t*). If x E [xj_ I, xj ] and n = 2j, then, from (3.6) and (3.5), one has

J 6 [ 2An(x) = 1 + d aj + (dj_ , - dj_2dj) t] t(1 - t).
n-I

From Lemma 2.1 one gets dJ_ I - dj_2 dj = 1. The cubic polynomial
(a j + t) t(1 - t) attains its single maximum in the interval [0,1] in the point
t*, where

t* = (Vl- aj + 1)/3 (1/3 < t* < 1/2),

and ~ is the same as above. With the help of (3.10) we obtain the desired
result.

The last statement of the thesis follows immediately from (3.5), (3.8) and
(3.9). I

In Table I we give values of IIP~II and en := maxI<i<n Ai - min'<;<nA; for
small values of n.

COROLLARY 3.2. If P ~ is defined as in Theorem 3.2, then

IIP~II < IIP~II < IIP~II <... < (1 +3(3)1/2)/4 = 1.549038.... I
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TABLE I

n IIP~II en

1 1.0 0.0
2 1.222222 0.0
3 1.5 0.262963
4 1.522407 0.284312
5 1.545455 0.307284
6 1.547116 0.308939
7 1.548780 0.310603
8 1.548900 0.310723
9 1.549020 0.310843

10 1.549028 0.310851

4. QUINTIC CASE

In this section we assume that the knots Xi are equidistant, i.e., Xi = i/n for
all i = 0,1,..., n. We give below an upper bound for the norm of the
projection P~, under the assumption that the spline function s = P~f satisfies
the boundary conditions (1.1) or (1.2) for q = 3. Let us denote.li = s(xj ),

mj=s'(xj), Mj=S"(Xj), Sj=SIV(Xj) U=O,I,...,n). The first theorem
follows.

THEOREM 4.1. Let Xi = i/n, (P~f)(Xi) =f(xi) (i = 0,1,..., n; fE C(I»
and let (P~ f)U)(O) = (P~f)U)(l) = °for j = 1,2. Then

Proof It is known that the first derivatives mj satisfy the following
consistency relations:

227m l + 79m2+ 3m3= n(-235fo + 65fl + 155f2 + 15f3)'

mj_2+ 26mj _ 1 + 66mj + 26mJ+ 1 + mJ+2

= 5n(-fj_2 - lOfj_1 + lOfj+ 1+ fj+2) U = 2, 3,..., n - 2),

3mn_3+ 79mn_2+ 227mn_1 = n(-I5fn_3 - 155fn_2 - 65fn_1 + 235fn)

(see, e.g., [9 D. Let A denote the matrix of the above system of linear
equations with unknowns mJ U= 1,2'0'0' n - 1; mo= mn = 0). Using the
standard diagonal dominance argument we obtain IIA -11100 ~ 1/12 (here
/I 0 /100 stands for the infinity norm of the square matrix). Now we take a
function fE C(I) such that Ilflloo ~ 1. Let b = (bi' b2,..., bn_I)T, where bj
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denotes the right-hand side in the jth eq uation of the above system. It is
obvious that

Hence

235
max Imjl :S;;;-6-n.
o<;j<; n

Hoskins [9] proved that

Mj _ 1 - 6Mj +Mj+ 1 = -20n 2
(Jj_1 - 2Jj +Jj+ I) +8n(mj +1 - mj _ 1)

U= 1,2,..., n - I;Mo= M n =0).

Similarly to that above one can prove

530 2
max IMjl :S;;;-3-n .

o<;j<; n

(4.1 )

(4.2)

For xE [x/_l'x/l (i= 1,2,...,n) the quintic spline P~fmay by written as

(P~f)(x) =/;-1 <Po(t) +/;<Po(I - t) + [m/_ 1 <PI(t) - m/<P 1(1 - t) lin

+ [M/_ I <P 2(t) + M/<P 2(I - t)]/n 2
, (4.3)

where t = n(x - X/-I)'

<Po(x) = (I _x)3(1 +3x +6x 2
),

<P 1(x) =x(1 - x)3(1 + 3x),

<P2(x)=x 2(I-x)3.

(4.4)

From (4.4) we see that I'P/(x), <P/(I - x) ~ 0 for O:S;;; x:S;;; 1 and i =0, 1,2.
We also have

<Po(x) + <Po(1 - x) = 1,

S
<P 1(x) + <P1(I - x) ~ 16' (4.5)

1
<P 2(x) + <P 2(I - x) ~ 32 (0 ~ x ~ I).
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Taking IE C(l) and such that 11/1100 ~ 1 we obtain, by virtue of (4.1)-(4.3)
and (4.5),

I
5 73

(Pnf)(x)1 ~ 18 %'

Hence the desired result follows. I

In the case when the boundary conditions (1.2) are imposed on the spline
function P~/then the upper bound for the norm of this projection is given in
the following

THEOREM 4.2. Let Xi = i/n, (P~f)(x;)=/(x;) (i = 0,1,... , n;fE C(l))
and let (P~f)U)(O) = (P~f)U)(I) = 0 lor j = 2, 4. Then

Proof We only sketch the proof because it is quite similar to the proof
of Theorem 4.1. The consistency relations for the fourth-order derivatives
Sj=SIV(Xj) are

65S I + 26S2+ S3 = 120n4(-2/o + 5/I - 4/2 +/3)'

Sj_2 + 26Sj _ I + 66Sj + 26Sj+I + Sj+2

= 120n\/i_2 - 4}j_1 + 6Jj - 4}j+ I +Jj+2) (j = 2, 3,... , n - 2),

Sn-3 + 26Sn-2 + 65Sn- I = 120n
4
(ln_3 - 4/n-2 + 5ln-l - 2/n)

(see, e.g., [30]). Hence if 11/1100 ~ 1 then

(4.6)

We also have Mj=n2(Jj_I-2Jj+Jj+I)-(Sj~I+8Sj+Sj+l)/120n2 (see,
e.g., [30]). By virtue of (4.6) one gets

52 2
max IMjl ~-3-n .

O<:,j<:,n
(4.7)

For xE [xi-l'xil (i= 1,2,... ,n) the quintic spline (P~f)(x) may be written
as

(P~f)(x)=/i-1 'f'o(l-t)+/;'f'oCt)+ [Mi- I 'f'1(I-t)+Mi 'f't(t)J!n 2

+ [Si-I 'f'2(l-t)+Si'f'2(t)J!n 4
, (4.8)
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where t = n(x - Xi_I)'

'Po(x) = X,

'P1(x) = (x 3 -x)/6,

'P2(x) = (x 5
- x)/120 - 'PJx)/6.

We see that

'Po(x) + 'Po(l - x) = 1,

1
1'Plx-) + 'P1(l - x)1 <8'

5
'P2(x) + 'Pi 1 - x) < 384 .

Hence and from (4.6)-(4.8) we obtain the desired result. I
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