JOURNAL OF APPROXIMATION THEORY 35, 299-310 (1982)

Bounds for the Norm of Certain Spline Projections, II*

E. NEUMAN

Institute of Computer Science, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Communicated by G. Meinardus

Received May 10, 1981

1. INTRODUCTION AND NOTATION

Let *n* and *q* be given natural numbers such that $n + 1 \ge q > 0$ (n > 0). By *I* we denote the unit interval [0, 1] and Δ_n is an arbitrary but fixed partition of the interval *I*:

$$\Delta_n : 0 = x_0 < x_1 < \dots < x_n = 1.$$

By $\operatorname{Sp}(2q-1, \Delta_n)$ we denote the space of polynomial splines of degree 2q-1, deficiency 1, and knots x_i (i=0, 1, ..., n). Thus $s \in \operatorname{Sp}(2q-1, \Delta_n)$ if and only if

(i) in each interval $[x_{i-1}, x_i]$ (i = 1, 2, ..., n) s coincides with an algebraic polynomial of degree 2q - 1 or less,

(ii) $s \in C^{2q-2}(I)$.

It is known that $\operatorname{Sp}(2q-1, \Delta_n)$ is a linear subspace of the space C(I) and dim $\operatorname{Sp}(2q-1, \Delta_n) = n + 2q - 1$ (cf. [1]). In the sequel we will assume that each element s from the space $\operatorname{Sp}(2q-1, \Delta_n)$ satisfies additionally some boundary conditions

$$s^{(j)}(0) = s^{(j)}(1) = 0$$
 $(j = 1, 2, ..., q - 1),$ (1.1)

or

$$s^{(j)}(0) = s^{(j)}(1) = 0$$
 $(j = 2, 4, ..., 2q - 2).$ (1.2)

The conditions (1.2) are called Lidstone-type conditions (cf. [8]).

* This paper was completed while the author was visiting at the Gesellschaft für Mathematik und Datenverarbeitung at St. Augustin, Federal Republic of Germany.

0021-9045/82/080299-12\$02.00/0

Copyright © 1982 by Academic Press, Inc. All rights of reproduction in any form reserved. It is known (see, e.g., [1]) that for given real numbers f_i (i = 0, 1, ..., n) there exists exactly one $s \in \text{Sp}(2q - 1, \Delta_n)$ interpolating the data f_i , i.e.,

$$s(x_i) = f_i$$
 (*i* = 0, 1,..., *n*), (1.3)

jointly with the boundary conditions (1.1) or (1.2) (cf. [1]).

Every such spline function s may be written in the Lagrange form

$$s(x) = \sum_{i=0}^{n} f_i s_i(x) \qquad (x \in I),$$

where $s_i \in \text{Sp}(2q-1, \Delta_n)$, $s_i(x_j) = \delta_{ij}$ (i, j = 0, 1, ..., n) and every function s_i satisfies the boundary conditions (1.1) or (1.2). The functions s_i are the so-called *fundamental spline functions*. They play an important role in our further considerations. Consider the operator P_n^{2q-1} defined by

$$(P_n^{2q-1}f)(x) = \sum_{i=0}^n f(x_i) \, s_i(x) \qquad (f \in C(I)). \tag{1.4}$$

It is obvious that P_n^{2q-1} is a linear, bounded and idempotent map from C(I) onto $\operatorname{Sp}(2q-1, \Delta_n)$; thus P_n^{2q-1} is a projection.

Let $\|\cdot\|_{\infty}$ stand for the sup-norm in the interval *I*. The inequality

$$\|f - P_n^{2q-1}\|_{\infty} \leq (1 + \|P_n^{2q-1}\|) \operatorname{dist}(f, \operatorname{Sp}(2q-1, \Delta_n))$$

is well known (here $f \in C(I)$). The operator norm $\|\cdot\|$ is defined in the usual way,

$$||P_n^{2q-1}|| = \sup_{||f||_{\infty} \leq 1} ||P_n^{2q-1}f||_{\infty}.$$

From this inequality we see that the knowledge on the size of the norm P_n^{2q-1} is important.

In this paper we will give some results concerning the norms of the projections P_n^{2q-1} . We continue our earlier investigations from [22], where the natural boundary conditions were imposed on the spline function $s \equiv P_n^{2q-1}f$. For other results for the non-periodic boundary conditions see [2-4, 12, 29]. In the case of the periodic boundary conditions (i.e., such that $s^{(j)}(0) = s^{(j)}(1)$ for j = 0, 1, ..., 2q - 2) many results are known up to date (see [6, 12-20, 24-28]).

In Section 3 the cubic case (q = 2) is treated assuming the boundary conditions (1.1). For the second type boundary conditions some results are given in the above-mentioned paper [22]. Estimations from above for $||P_n^3||$ (for arbitrary knots) and explicit formulae for these norms for equidistant knots are given. In the final section the uniform upper bounds for $||P_n^s||$ are

derived (in the case of equidistant knots). The interpolant $P_n^5 f$ satisfies the boundary conditions (1.1) or (1.2).

For the related results concerning the norm of some quadratic spline projections, see, [3, 7, 10, 11, 19, 20, 23–25, 29].

2. Lemmas

For our further aims we define the bi-infinity sequence $\{d_i\}$ in the following manner: $d_{-i} = 0$, $d_0 = 1$, $d_1 = 4$, $d_{i+1} = 4 d_i - d_{i-1}$ (i = 1, 2,...).

LEMMA 2.1. If the numbers d_i are defined as above, then

$$\begin{aligned} d_{i}d_{l} - d_{i-1}d_{l+1} &= d_{l-i} & \text{if } 0 \leq i \leq l+1, \\ &= -d_{i-l-2} & \text{if } i \geq l+1. \end{aligned}$$

Proof. Since $d_m = [(2 + (3)^{1/2})^{m+1} - (2 - (3)^{1/2})^{m+1}]/(2(3)^{1/2})$ (m = -1, 0,...), then the desired result follows by direct calculations.

Let
$$\beta_{j,-1} = \beta_{j0} = \beta_{jn} = \beta_{j,n+1} = 0$$
, and
 $\beta_{ij} = (-1)^{i+j} d_{j-1} d_{n-i-1} / d_{n-1} \quad (j \le i),$
 $= (-1)^{i+j} d_{i-1} d_{n-j-1} / d_{n-1} \quad (j \ge i)$
 $(i, j = 1, 2, ..., n-1).$ (2.1)

We have the following

LEMMA 2.2. If the numbers $m_i^{(i)}$ are such that

$$m_{j-1}^{(l)} + 4m_j^{(l)} + m_{j+1}^{(l)} = 3n(\delta_{j+1,i} - \delta_{j-1,i}),$$

$$m_0^{(l)} = m_n^{(l)} = 0 \qquad (i = 0, 1, ..., n; j = 1, 2, ..., n - 1),$$
(2.2)

then

$$m_{j}^{(i)} = (-1)^{i+j+1} 3n d_{j-1}(d_{n-i} - d_{n-i-2})/d_{n-1} \qquad (j < i),$$

= $3n(d_{i-1}d_{n-i-2} - d_{i-2}d_{n-i-1})/d_{n-1} \qquad (j = i),$
= $(-1)^{i+j} 3n d_{n-j-1}(d_i - d_{i-2})/d_{n-1} \qquad (j > i)$
 $(i = 0, 1, ..., n; j = 1, 2, ..., n-1).$ (2.3)

Proof. It is known (see, e.g., [21]) that the matrix of the above linear

system (2.2) possesses an inverse with entries β_{ij} given by (2.1). By virtue of (2.2) we have

$$m_j^{(i)} = 3n(\beta_{j,i-1} - \beta_{j,i+1}).$$

Hence and from (2.1) we obtain the desired result (2.3).

LEMMA 2.3. Let $x_i = i/n$, $s_i \in \text{Sp}(3, \Delta_n)$ (i = 0, 1, ..., n) and let each fundamental spline function s_i satisfy the boundary conditions (1.1) for q = 2. If $x \in (x_{j-1}, x_j)$ (j = 1, 2, ..., n), then

$$sgn s_i(x) = (-1)^{i+j} \qquad (j \le i),$$

= $(-1)^{i+j+1} \qquad (j > i)$
 $(i = 0, 1, ..., n; j = 1, 2, ..., n).$ (2.4)

The proof of (2.4) follows immediately from Theorem 2 (Part I) in [5].

3. CUBIC CASE

For the sake of brevity we introduce more notation. Let $h_j = x_j - x_{j-1}$ (j = 1, 2,..., n), $h = \max_{1 \le j \le n} h_j$, $\alpha = \max_{|i-j|=1} h_i / [h_j(h_i + h_j)]$. Our first result is contained in the following

THEOREM 3.1. Let the knots x_i be arbitrary, $(P_n^3 f)(x_i) = f(x_i)$ (i = 0, 1, ..., n) and $(P_n^3 f)'(0) = (P_n^3 f)'(1) = 0$. Then

 $\|P_n^3\| \leqslant 1 + \frac{3}{2}\alpha h,\tag{3.1}$

where α and h are defined as above.

The proof is quite similar to that of [6, Theorem 1]. For this reason it is omitted. \blacksquare

From (3.1) we have the following

COROLLARY 3.1. For equidistant knots we have $||P_n^3|| \leq \frac{7}{4}$.

Now we shall give an explicit formula for the norm of the projection P_n^3 in the case of equidistant knots. Let

$$\Lambda_n^{2q-1}(x) = \sum_{l=0}^n |s_l(x)| \qquad (x \in I),$$

302

denote the so-called Lebesgue function for the projection P_n^{2q-1} . It is known that $||P_n^{2q-1}|| = ||A_n^{2q-1}||_{\infty}$. From this equality it follows that for our aims we must have more information on the functions s_i . Let $m_i^{(l)} = s'_i(x_i)$ (i, l = 0, 1, ..., n). By virtue of our assumptions we have $m_0^{(l)} = m_n^{(l)} = 0$ for all l. If $x \in [x_{i-1}, x_i]$ (i = 1, 2, ..., n) and if knots x_i are equidistant, then each fundamental spline $s_i(x)$ may be written as

$$s_{l}(x) = \delta_{i-1,l} \Phi_{0}(x) + \delta_{il} \Phi_{0}(1-x) + m_{i-1}^{(l)} \Phi_{1}(x) - m_{i}^{(l)} \Phi_{1}(1-x)$$

(l = 0, 1,..., n; x \in [x_{i-1}, x_{i}]; i = 1, 2,..., n-1), (3.2)

where

$$\Phi_0(x) = (1+2t)(1-t)^2,$$

$$\Phi_1(x) = t(1-t)^2/n, \quad t = n(x-x_{i-1}),$$
(3.3)

(see, e.g., [1,6]). If $x \in [x_{i-1}, x_i]$, then $\Phi_0(x)$, $\Phi_0(1-x)$, $\Phi_1(x)$, $\Phi_1(1-x) \ge 0$, and

$$\Phi_0(x) + \Phi_0(1-x) = 1,$$

$$\Phi_1(x) + \Phi_1(1-x) \le 1/4n.$$

With the help of Lemma 2.3 and (3.2) one can prove

$$\Lambda_{n}^{3}(x) = 1 + \alpha_{i,n} \boldsymbol{\Phi}_{1}(x) - \beta_{i,n} \boldsymbol{\Phi}_{1}(1-x)$$
$$(x \in [x_{i-1}, x_{i}]; i = 1, 2, ..., n),$$

where

$$\alpha_{i,n} = \sum_{l=0}^{i-1} (-1)^{i+l+1} m_{i-1}^{(l)} + \sum_{l=i}^{n} (-1)^{i+l} m_{i-1}^{(l)},$$

$$\beta_{i,n} = \sum_{l=0}^{i-1} (-1)^{l+l+1} m_{i}^{(l)} + \sum_{l=i}^{n} (-1)^{i+l} m_{i}^{(l)}.$$

By virtue of (2.3) the above formulae simplify to

$$\alpha_{i,n} = \frac{6}{d_{n-1}} d_{i-2} (d_{n-i-1} + d_{n-i}),$$

$$\beta_{i,n} = -\frac{6}{d_{n-1}} d_{n-i-1} (d_{i-2} + d_{i-1}) \qquad (i = 1, 2, ..., n).$$
(3.4)

E. NEUMAN

Thus if $x \in [x_{i-1}, x_i]$, then the Lebesgue function $\Lambda_n^3(x)$ may be written as

$$\Lambda_n^3(x) = 1 + \frac{6}{d_{n-1}} \left[a_i(1-t) + b_i t \right] t(1-t)$$

(t = n(x - x_{i-1}); i = 1, 2,..., n), (3.5)

where

$$a_{i} = d_{i-2}(d_{n-i-1} + d_{n-i}),$$

$$b_{i} = d_{n-i-1}(d_{i-2} + d_{i-1}) \qquad (i = 1, 2, ..., n).$$
(3.6)

Let $\lambda_i = \max_{x_{i-1} \leq x \leq x_i} \Lambda_n^3(x)$ (i = 1, 2, ..., n). From (3.5) and (3.6) we see that $\Lambda_n^3(x) = \Lambda_n^3(1-x)$. Hence $\lambda_i = \lambda_{n+1-i}$ (i = 1, 2, ..., n).

THEOREM 3.2. Let $x_i = i/n$, $(P_n^3 f)(x_i) = f(x_i)$ (i = 0, 1, ..., n), $(P_n^3 f)'(0) = (P_n^3 f)'(1) = 0$. Then

$$\|P_n^3\| = 1 + \frac{3}{2d_{n-1}} d_{j-1}(d_{j-1} + d_j) \qquad \text{if } n = 2j + 1 \quad (j = 0, 1, ...),$$

= $1 + \frac{2}{9d_{n-1}} [2\delta^{3/2} + (3 - \delta)(2a_j + 1)] \quad \text{if } n = 2j \qquad (j = 1, 2, ...),$

where a_j is defined in (3.6) and $\delta = a_j^2 + a_j + 1$. Moreover,

$$\lambda_1 < \lambda_2 < \cdots < \lambda_{j+1}; \quad \lambda_{j+1} > \lambda_{j+2} > \cdots > \lambda_n \quad \text{if} \quad n = 2j+1,$$

and

$$\lambda_1 < \lambda_2 < \cdots < \lambda_j = \lambda_{j+1}; \quad \lambda_{j+1} > \lambda_{j+2} > \cdots > \lambda_n \qquad \text{if} \quad n = 2j.$$

Proof. According to Lemma 2.1 we have, by virtue of (3.6),

$$a_{i+1} - a_i = d_{n-2i-1} + d_{n-2i} \quad \text{if} \quad 2i \le n, = -(d_{2i-n-1} + d_{2i-n-2}) \quad \text{if} \quad 2i+1 \ge n.$$
(3.7)

Now we consider two cases. Let

1°. n = 2j + 1 (j = 0, 1,...). By virtue of (3.6) and (3.7) one gets

$$a_{i+1} - a_i > 0$$
 if $i = 1, 2, ..., j$,
< 0 if $i = j + 1, j + 2, ..., n$,

and

$$\begin{aligned} b_{i+1} - b_i &> 0 & \text{if} \quad i = 1, 2, ..., j, \\ &< 0 & \text{if} \quad i = j+1, j+2, ..., n. \end{aligned}$$

Thus

and

$$a_{1} < a_{2} < \dots < a_{j+1}; \quad a_{j+1} > a_{j+2} > \dots > a_{n},$$

$$b_{1} < b_{2} < \dots < b_{j+1}; \quad b_{j+1} > b_{j+2} > \dots > b_{n}.$$
(3.8)

Moreover, $a_{j+1} = b_{j+1}$.

By virtue of (3.5) and (3.8) we have

$$||P_n^3|| = \max_{x_j \le x \le x_{j+1}} \Lambda_n^3(x) = \Lambda_n^3\left(\frac{1}{2}\right) = 1 + \frac{3}{2d_{n-1}}d_{j-1}(d_{j-1}+d_j).$$

2°. n = 2j (j = 1, 2,...). Similarly to the previous case we can prove

$$a_{1} < a_{2} < \dots < a_{j+1}; \quad a_{j+1} > a_{j+2} > \dots > a_{n},$$

$$b_{1} < b_{2} < \dots < b_{j}; \quad b_{j} > b_{j+1} > \dots > b_{n}.$$
(3.9)

and

Moreover, $a_j = b_{j+1}$ and $a_{j+1} = b_j$. Hence $||P_n^3|| = \max_{x_{j-1} \le x \le x_j} A_n^3(x) = A_n^3(t^*)$. If $x \in [x_{j-1}, x_j]$ and n = 2j, then, from (3.6) and (3.5), one has

$$\Lambda_n^3(x) = 1 + \frac{6}{d_{n-1}} \left[a_j + \left(d_{j-1}^2 - d_{j-2} d_j \right) t \right] t(1-t).$$
(3.10)

From Lemma 2.1 one gets $d_{j-1}^2 - d_{j-2}d_j = 1$. The cubic polynomial $(a_j + t) t(1 - t)$ attains its single maximum in the interval [0, 1] in the point t^* , where

$$t^* = (\sqrt{\delta} - a_j + 1)/3$$
 (1/3 < $t^* < 1/2$),

and δ is the same as above. With the help of (3.10) we obtain the desired result.

The last statement of the thesis follows immediately from (3.5), (3.8) and (3.9).

In Table I we give values of $||P_n^3||$ and $e_n := \max_{1 \le i \le n} \lambda_i - \min_{1 \le i \le n} \lambda_i$ for small values of n.

COROLLARY 3.2. If P_n^3 is defined as in Theorem 3.2, then

$$||P_1^3|| < ||P_3^3|| < ||P_5^3|| < \cdots < (1+3(3)^{1/2})/4 = 1.549038....$$

n	$\ \boldsymbol{P}_n^3\ $	e _n
1	1.0	0.0
2	1.222222	0.0
3	1.5	0.262963
4	1.522407	0.284312
5	1.545455	0.307284
6	1.547116	0.308939
7	1.548780	0.310603
8	1.548900	0.310723
9	1.549020	0.310843
10	1.549028	0.310851

TABLE I

4. QUINTIC CASE

In this section we assume that the knots x_i are equidistant, i.e., $x_i = i/n$ for all i = 0, 1, ..., n. We give below an upper bound for the norm of the projection P_n^5 , under the assumption that the spline function $s = P_n^5 f$ satisfies the boundary conditions (1.1) or (1.2) for q = 3. Let us denote $f_j = s(x_j)$, $m_j = s'(x_j)$, $M_j = s''(x_j)$, $S_j = s^{IV}(x_j)$ (j = 0, 1, ..., n). The first theorem follows.

THEOREM 4.1. Let $x_i = i/n$, $(P_n^{s} f)(x_i) = f(x_i)$ $(i = 0, 1, ..., n; f \in C(I))$ and let $(P_n^{s} f)^{(j)}(0) = (P_n^{s} f)^{(j)}(1) = 0$ for j = 1, 2. Then

$$\|P_n^5\|\leqslant 18\frac{73}{96}.$$

Proof. It is known that the first derivatives m_j satisfy the following consistency relations:

$$227m_{1} + 79m_{2} + 3m_{3} = n(-235f_{0} + 65f_{1} + 155f_{2} + 15f_{3}),$$

$$m_{j-2} + 26m_{j-1} + 66m_{j} + 26m_{j+1} + m_{j+2}$$

$$= 5n(-f_{j-2} - 10f_{j-1} + 10f_{j+1} + f_{j+2}) \qquad (j = 2, 3, ..., n-2),$$

$$3m_{n-3} + 79m_{n-2} + 227m_{n-1} = n(-15f_{n-3} - 155f_{n-2} - 65f_{n-1} + 235f_{n})$$

(see, e.g., [9]). Let A denote the matrix of the above system of linear equations with unknowns m_j $(j = 1, 2, ..., n - 1; m_0 = m_n = 0)$. Using the standard diagonal dominance argument we obtain $||A^{-1}||_{\infty} \leq 1/12$ (here $||\cdot||_{\infty}$ stands for the infinity norm of the square matrix). Now we take a function $f \in C(I)$ such that $||f||_{\infty} \leq 1$. Let $b = (b_1, b_2, ..., b_{n-1})^T$, where b_j

denotes the right-hand side in the *j*th equation of the above system. It is obvious that

$$\max_{1\leqslant j\leqslant n-1}|b_j|\leqslant 470n.$$

Hence

$$\max_{0 \le j \le n} |m_j| \le \frac{235}{6} n. \tag{4.1}$$

Hoskins [9] proved that

$$M_{j-1} - 6M_j + M_{j+1} = -20n^2(f_{j-1} - 2f_j + f_{j+1}) + 8n(m_{j+1} - m_{j-1})$$

(j = 1, 2,..., n - 1; M₀ = M_n = 0).

Similarly to that above one can prove

$$\max_{0 \le j \le n} |M_j| \le \frac{530}{3} n^2. \tag{4.2}$$

For $x \in [x_{i-1}, x_i]$ (i = 1, 2, ..., n) the quintic spline $P_n^5 f$ may by written as

$$(P_n^5 f)(x) = f_{i-1} \Phi_0(t) + f_i \Phi_0(1-t) + [m_{i-1} \Phi_1(t) - m_i \Phi_1(1-t)]/n + [M_{i-1} \Phi_2(t) + M_i \Phi_2(1-t)]/n^2,$$
(4.3)

where $t = n(x - x_{i-1})$,

$$\Phi_0(x) = (1-x)^3 (1+3x+6x^2),$$

$$\Phi_1(x) = x(1-x)^3 (1+3x),$$

$$\Phi_2(x) = x^2 (1-x)^3.$$

(4.4)

From (4.4) we see that $\Phi_i(x)$, $\Phi_i(1-x) \ge 0$ for $0 \le x \le 1$ and i = 0, 1, 2. We also have

$$\Phi_{0}(x) + \Phi_{0}(1-x) = 1,$$

$$\Phi_{1}(x) + \Phi_{1}(1-x) \leq \frac{5}{16},$$

$$\Phi_{2}(x) + \Phi_{2}(1-x) \leq \frac{1}{32} \qquad (0 \leq x \leq 1).$$
(4.5)

Taking $f \in C(I)$ and such that $||f||_{\infty} \leq 1$ we obtain, by virtue of (4.1)-(4.3) and (4.5),

$$|(P_n^5f)(x)| \leqslant 18\frac{73}{96}.$$

Hence the desired result follows.

In the case when the boundary conditions (1.2) are imposed on the spline function $P_n^5 f$ then the upper bound for the norm of this projection is given in the following

THEOREM 4.2. Let $x_i = i/n$, $(P_n^5 f)(x_i) = f(x_i)$ $(i = 0, 1, ..., n; f \in C(I))$ and let $(P_n^5 f)^{(j)}(0) = (P_n^5 f)^{(j)}(1) = 0$ for j = 2, 4. Then

$$\|P_n^5\|\leqslant \frac{21}{4}.$$

Proof. We only sketch the proof because it is quite similar to the proof of Theorem 4.1. The consistency relations for the fourth-order derivatives $S_i = s^{IV}(x_i)$ are

$$\begin{split} & 65S_1 + 26S_2 + S_3 = 120n^4(-2f_0 + 5f_1 - 4f_2 + f_3), \\ & S_{j-2} + 26S_{j-1} + 66S_j + 26S_{j+1} + S_{j+2} \\ & = 120n^4(f_{j-2} - 4f_{j-1} + 6f_j - 4f_{j+1} + f_{j+2}) \qquad (j = 2, 3, ..., n-2), \\ & S_{n-3} + 26S_{n-2} + 65S_{n-1} = 120n^4(f_{n-3} - 4f_{n-2} + 5f_{n-1} - 2f_n) \end{split}$$

(see, e.g., [30]). Hence if $||f||_{\infty} \leq 1$ then

$$\max_{0 \le j \le n} |S_j| \le 160n^4. \tag{4.6}$$

We also have $M_j = n^2(f_{j-1} - 2f_j + f_{j+1}) - (S_{j-1} + 8S_j + S_{j+1})/120n^2$ (see, e.g., [30]). By virtue of (4.6) one gets

$$\max_{0 \leq j \leq n} |M_j| \leq \frac{52}{3} n^2.$$

$$(4.7)$$

For $x \in [x_{i-1}, x_i]$ (i = 1, 2, ..., n) the quintic spline $(P_n^5 f)(x)$ may be written as

$$(P_n^5 f)(x) = f_{i-1} \Psi_0(1-t) + f_i \Psi_0(t) + [M_{i-1} \Psi_1(1-t) + M_i \Psi_1(t)]/n^2 + [S_{i-1} \Psi_2(1-t) + S_i \Psi_2(t)]/n^4,$$
(4.8)

308

where $t = n(x - x_{i-1})$,

$$\begin{split} \Psi_0(x) &= x, \\ \Psi_1(x) &= (x^3 - x)/6, \\ \Psi_2(x) &= (x^5 - x)/120 - \Psi_1(x)/6. \end{split}$$

We see that

$$\begin{split} \Psi_0(x) + \Psi_0(1-x) &= 1, \\ |\Psi_1(x) + \Psi_1(1-x)| \leq \frac{1}{8}, \\ \Psi_2(x) + \Psi_2(1-x) \leq \frac{5}{384}. \end{split}$$

Hence and from (4.6)–(4.8) we obtain the desired result.

ACKNOWLEDGMENT

The author wishes to thank Dr. A. Pokrzywa of the Mathematical Institute, Polish Academy of Sciences, for helpful remarks on an earlier draft of this paper.

References

- 1. J. H. AHLBERG, E. N. NILSON, AND J. L. WALSH, "The Theory of Splines and Their Applications," Academic Press. New York, 1967.
- C. DE BOOR, "The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines," Ph.D. dissertation, University of Michigan, Ann Arbor, 1966.
- 3. C. DE BOOR, On bounding spline interpolation, J. Approx. Theory 14 (1975), 191-203.
- 4. C. DE BOOR, On cubic spline functions that vanish at all knots, Advan. Math. 20(1976). 1-17.
- C. DE BOOR AND I. J. SCHOENBERG, Cardinal interpolation and spline functions. VIII. The Budan-Fourier theorem for splines and applications, *in* "Spline Functions, Karslruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 1–79, Lecture Notes in Mathematics Vol. 501, Springer-Verlag, Berlin, 1976.
- E. W. CHENEY AND F. SCHURER, A note on the operators arising in spline approximation. J. Approx. Theory 1 (1968), 94-102.
- 7. S. DEMKO, Interpolation by quadratic splines, J. Approx. Theory 23 (1978), 392-400.
- 8. C. A. HALL AND W. W. MEYER. Optimal error bounds for cubic spline interpolation, J. Approx. Theory 16 (1976), 105–122.
- W. D. HOSKINS, Algorithm 62. Interpolating quintic splines on equidistant knots. Comput. J. 13(1970), 437-438.
- W. J. KAMMERER, G. W. REDDIEN, AND R. S. VARGA, Quadratic interpolating splines. Numer. Math. 22 (1974), 241-259.

E. NEUMAN

- 11. M. MARSDEN, Quadratic spline interpolation, Bull. Amer. Math. Soc. 80 (1974), 903-906.
- 12. M. MARSDEN, Cubic spline interpolation of continuous functions, J. Approx. Theory 10 (1974), 103-111.
- 13. G. MEINARDUS, Über die Norm des Operators der Kardinalen Spline-Interpolation, J. Approx. Theory 16 (1976), 289-298.
- G. MEINARDUS, Periodische Spline-Funktionen, in "Spline Functions, Karlsruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 177–199, Lecture Notes in Mathematics Vol. 501, Springer-Verlag, Berlin, 1976.
- 15. G. MEINARDUS, Computation of the norms of some spline interpolation operators, *in* "Polynomial and Spline Approximation" (B. N. Sahney, Ed.), pp. 155–161, NATO Advanced Study Institute Series, Riedel, Dordrecht, 1979.
- G. MEINARDUS AND G. MERZ, Zur periodischen Spline-Interpolation, in "Spline-Funtionen" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 177–195, Bibliographisches Institut, Mannheim, 1974.
- G. MEINARDUS AND G. MERZ, Zur periodischen Spline-Interpolation, II, in "Numerische Methoden der Approximationstheorie" (L. Collatz, G. Meinardus, and H. Werner, Eds.), Band 4, pp. 204–221, ISNM 42, Birkhäuser-Verlag, Basel, 1978.
- 18. G. MEINARDUS AND G. D. TAYLOR, Periodic quadratic spline interpolant of minimal norm, J. Approx. Theory 23 (1978), 137-141.
- G. MERZ, Normen von Spline-Interpolationsoperatoren, in "Approximation in Theorie und Praxis" (G. Meinardus, Ed.), pp. 183-208, Bibliographisches Institut, Mannheim, 1979.
- 20. G. MERZ, Interpolation mit periodischen Spline-Funktionen II, J. Approx. Theory, in press.
- 21. E. NEUMAN, The inversion of certain band matrices, (in Polish), Mat. Stos. 9 (1977), 15-24.
- 22. E. NEUMAN, Bounds for the norm of certain spline projections, J. Approx. Theory 27 (1979), 135-145.
- 23. E. NEUMAN, Quadratic splines and histospline projections, J. Approx. Theory 29 (1980), 297-304.
- F. B. RICHARDS: Best bounds for the uniform periodic spline operator, J. Approx. Theory 7 (1973), 302-317.
- 25. F. B. RICHARDS, The Lebesgue constants for cardinal spline interpolation, J. Approx. Theory 14 (1975), 83-92.
- 26. F. SCHURER AND E. W. CHENEY, On interpolating cubic splines with equally-spaced nodes, *Nederl. Akad. Wetensch. Proc. Ser. A* 71 (1968), 517-524.
- F. SCHURER, A note on interpolating periodic quintic splines with equally spaced nodes, J. Approx. Theory 1 (1968), 493-500.
- F. SCHURER, A note on interpolating quintic spline fuctions, in "Approximation Theory" (A. Talbot, Ed.), pp. 71-81, Academic Press, London/New York, 1970.
- 29. J. TZIMBALARIO, On a class of interpolatory splines, J. Approx. Theory 23 (1978), 142-145.
- 30. R. A. USMANI AND S. A. WARSI, Smooth spline solutions for boundary value problems in plate deflection theory, *Comput. Math. Appl.* 6 (1980), 205-211.