Bounds for the Norm of Certain Spline Projections, II*

E. Neuman
Institute of Computer Science, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland
Communicated by G. Meinardus
Received May 10, 1981

1. Introduction and Notation

Let n and q be given natural numbers such that $n+1 \geqslant q>0(n>0)$. By I we denote the unit interval $[0,1]$ and Δ_{n} is an arbitrary but fixed partition of the interval I :

$$
\Delta_{n}: 0=x_{0}<x_{1}<\cdots<x_{n}=1 .
$$

By $\operatorname{Sp}\left(2 q-1, \Delta_{n}\right)$ we denote the space of polynomial splines of degree $2 q-1$, deficiency 1 , and knots $x_{i}(i=0,1, \ldots, n)$. Thus $s \in \operatorname{Sp}\left(2 q-1, \Delta_{n}\right)$ if and only if
(i) in each interval $\left[x_{i-1}, x_{i}\right](i=1,2, \ldots, n) s$ coincides with an algebraic polynomial of degree $2 q-1$ or less,
(ii) $s \in C^{2 q-2}(I)$.

It is known that $\operatorname{Sp}\left(2 q-1, A_{n}\right)$ is a linear subspace of the space $C(I)$ and $\operatorname{dim} \operatorname{Sp}\left(2 q-1, \Delta_{n}\right)=n+2 q-1$ (cf. [1]). In the sequel we will assume that each element s from the space $\operatorname{Sp}\left(2 q-1, \Delta_{n}\right)$ satisfies additionally some boundary conditions

$$
\begin{equation*}
s^{(j)}(0)=s^{(j)}(1)=0 \quad(j=1,2, \ldots, q-1) \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
s^{(j)}(0)=s^{(j)}(1)=0 \quad(j=2,4, \ldots, 2 q-2) \tag{1.2}
\end{equation*}
$$

The conditions (1.2) are called Lidstone-type conditions (cf. [8]).

[^0]It is known (see, e.g., [1]) that for given real numbers $f_{i}(i=0,1, \ldots, n)$ there exists exactly one $s \in \operatorname{Sp}\left(2 q-1, \Delta_{n}\right)$ interpolating the data f_{i}, i.e.,

$$
\begin{equation*}
s\left(x_{i}\right)=f_{i} \quad(i=0,1, \ldots, n) \tag{1.3}
\end{equation*}
$$

jointly with the boundary conditions (1.1) or (1.2) (cf. [1]).
Every such spline function s may be written in the Lagrange form

$$
s(x)=\sum_{i=0}^{n} f_{i} s_{i}(x) \quad(x \in I)
$$

where $s_{i} \in \operatorname{Sp}\left(2 q-1, \Delta_{n}\right), s_{i}\left(x_{j}\right)=\delta_{i j}(i, j=0,1, \ldots, n)$ and every function s_{i} satisfies the boundary conditions (1.1) or (1.2). The functions s_{i} are the socalled fundamental spline functions. They play an important role in our further considerations. Consider the operator $P_{n}^{2 q-1}$ defined by

$$
\begin{equation*}
\left(P_{n}^{2 q-1} f\right)(x)=\sum_{i=0}^{n} f\left(x_{i}\right) s_{i}(x) \quad(f \in C(I)) \tag{1.4}
\end{equation*}
$$

It is obvious that $P_{n}^{2 q-1}$ is a linear, bounded and idempotent map from $C(I)$ onto $\operatorname{Sp}\left(2 q-1, \Delta_{n}\right)$; thus $P_{n}^{2 q-1}$ is a projection.

Let $\|\cdot\|_{\infty}$ stand for the sup-norm in the interval I. The inequality

$$
\left\|f-P_{n}^{2 q-1}\right\|_{\infty} \leqslant\left(1+\left\|P_{n}^{2 q-1}\right\|\right) \operatorname{dist}\left(f, \operatorname{Sp}\left(2 q-1, \Delta_{n}\right)\right)
$$

is well known (here $f \in C(I)$). The operator norm $\|\cdot\|$ is defined in the usual way,

$$
\left\|P_{n}^{2 q-1}\right\|=\sup _{\|f\|_{\infty} \leqslant 1}\left\|P_{n}^{2 q-1} f\right\|_{\infty}
$$

From this inequality we see that the knowledge on the size of the norm $P_{n}^{2 q-1}$ is important.

In this paper we will give some results concerning the norms of the projections $P_{n}^{2 q-1}$. We continue our earlier investigations from [22], where the natural boundary conditions were imposed on the spline function $s \equiv P_{n}^{2 q-1} f$. For other results for the non-periodic boundary conditions see $[2-4,12,29]$. In the case of the periodic boundary conditions (i.e., such that $s^{(j)}(0)=s^{(j)}(1)$ for $\left.j=0,1, \ldots, 2 q-2\right)$ many results are known up to date (see [6, 12-20, 24-28]).

In Section 3 the cubic case $(q=2)$ is treated assuming the boundary conditions (1.1). For the second type boundary conditions some results are given in the above-mentioned paper [22]. Estimations from above for $\left\|P_{n}^{3}\right\|$ (for arbitrary knots) and explicit formulae for these norms for equidistant knots are given. In the final section the uniform upper bounds for $\left\|P_{n}^{s}\right\|$ are
derived (in the case of equidistant knots). The interpolant $P_{n}^{s} f$ satisfies the boundary conditions (1.1) or (1.2).

For the related results concerning the norm of some quadratic spline projections, see, $[3,7,10,11,19,20,23-25,29]$.

2. Lemmas

For our further aims we define the bi-infinity sequence $\left\{d_{i}\right\}$ in the following manner: $d_{-i}=0, d_{0}=1, d_{1}=4, d_{i+1}=4 d_{i}-d_{i-1}(i=1,2, \ldots)$.

Lemma 2.1. If the numbers d_{i} are defined as above, then

$$
\begin{aligned}
d_{i} d_{l}-d_{i-1} d_{l+1} & =d_{l-i} & & \text { if } 0 \leqslant i \leqslant l+1, \\
& =-d_{i-l-2} & & \text { if } i \geqslant l+1 .
\end{aligned}
$$

Proof. Since $\quad d_{m}=\left[\left(2+(3)^{1 / 2}\right)^{m+1}-\left(2-(3)^{1 / 2}\right)^{m+1}\right] /\left(2(3)^{1 / 2}\right) \quad(m=$ $-1,0, \ldots)$, then the desired result follows by direct calculations.

Let $\beta_{j,-1}=\beta_{j 0}=\beta_{j n}=\beta_{j, n+1}=0$, and

$$
\begin{align*}
\beta_{i j}=(-1)^{i+j} d_{j-1} d_{n-i-1} / d_{n-1} & (j \leqslant i), \\
=(-1)^{i+j} d_{i-1} d_{n-j-1} / d_{n-1} & (j \geqslant i) \\
& (i, j=1,2, \ldots, n-1) . \tag{2.1}
\end{align*}
$$

We have the following
Lemma 2.2. If the numbers $m_{j}^{(i)}$ are such that

$$
\begin{gather*}
m_{j-1}^{(i)}+4 m_{j}^{(i)}+m_{j+1}^{(i)}=3 n\left(\delta_{j+1, i}-\delta_{j-1, i}\right), \\
m_{0}^{(i)}=m_{n}^{(i)}=0 \quad(i=0,1, \ldots, n ; j=1,2, \ldots, n-1), \tag{2.2}
\end{gather*}
$$

then

$$
\begin{array}{rlrl}
m_{j}^{(i)} & =(-1)^{i+j+1} 3 n d_{j-1}\left(d_{n-i}-d_{n-i-2}\right) / d_{n-1} & & (j<i), \\
=3 n\left(d_{i-1} d_{n-i-2}-d_{i-1} d_{n-i-1}\right) / d_{n-1} & & (j=i), \\
=(-1)^{i+j} 3 n d_{n-j-1}\left(d_{i}-d_{i-2}\right) / d_{n-1} & (j>i) \\
& (i=0,1, \ldots, n ; j=1,2, \ldots, n-1) . \tag{2.3}
\end{array}
$$

Proof. It is known (see, e.g., [21]) that the matrix of the above linear
system (2.2) possesses an inverse with entries $\beta_{i j}$ given by (2.1). By virtue of (2.2) we have

$$
m_{j}^{(i)}=3 n\left(\beta_{j, i-1}-\beta_{j, i+1}\right)
$$

Hence and from (2.1) we obtain the desired result (2.3).
Lemma 2.3. Let $x_{i}=i / n, s_{i} \in \operatorname{Sp}\left(3, \Delta_{n}\right) \quad(i=0,1, \ldots, n)$ and let each fundamental spline function s_{i} satisfy the boundary conditions (1.1) for $q=2$. If $x \in\left(x_{j-1}, x_{j}\right)(j=1,2, \ldots, n)$, then

$$
\begin{array}{rll}
\operatorname{sgn} s_{i}(x)=(-1)^{i+j} & (j \leqslant i) \\
=(-1)^{i+j+1} & (j>i) \\
& (i=0,1, \ldots, n ; j=1,2, \ldots, n) \tag{2.4}
\end{array}
$$

The proof of (2.4) follows immediately from Theorem 2 (Part I) in [5].

3. Cubic Case

For the sake of brevity we introduce more notation. Let $h_{j}=x_{j}-x_{j-1}$ $(j=1,2, \ldots, n), h=\max _{1<j \leqslant n} h_{j}, \alpha=\max _{|i-j|=1} h_{i} /\left[h_{j}\left(h_{i}+h_{j}\right)\right]$.

Our first result is contained in the following
Theorem 3.1. Let the knots x_{i} be arbitrary, $\left(P_{n}^{3} f\right)\left(x_{i}\right)=f\left(x_{i}\right)$ $(i=0,1, \ldots, n)$ and $\left(P_{n}^{3} f\right)^{\prime}(0)=\left(P_{n}^{3} f\right)^{\prime}(1)=0$. Then

$$
\begin{equation*}
\left\|P_{n}^{3}\right\| \leqslant 1+\frac{3}{2} \alpha h, \tag{3.1}
\end{equation*}
$$

where α and h are defined as above.
The proof is quite similar to that of [6, Theorem 1]. For this reason it is omitted.

From (3.1) we have the following
Corollary 3.1. For equidistant knots we have $\left\|P_{n}^{3}\right\| \leqslant \frac{7}{4}$.
Now we shall give an explicit formula for the norm of the projection P_{n}^{3} in the case of equidistant knots. Let

$$
\Lambda_{n}^{2 q-1}(x)=\sum_{l=0}^{n}\left|s_{l}(x)\right| \quad(x \in I)
$$

denote the so-called Lebesgue function for the projection $P_{n}^{2 q-1}$. It is known that $\left\|P_{n}^{2 q-1}\right\|=\left\|\Lambda_{n}^{2 q-1}\right\|_{\infty}$. From this equality it follows that for our aims we must have more information on the functions s_{i}. Let $m_{i}^{(l)}=s_{l}^{\prime}\left(x_{i}\right)$ $(i, l=0,1, \ldots, n)$. By virtue of our assumptions we have $m_{0}^{(l)}=m_{n}^{(l)}=0$ for all l. If $x \in\left[x_{i-1}, x_{i}\right](i=1,2, \ldots, n)$ and if knots x_{i} are equidistant, then each fundamental spline $s_{l}(x)$ may be written as

$$
\begin{gather*}
s_{l}(x)=\delta_{i-1 . l} \Phi_{0}(x)+\delta_{i l} \Phi_{0}(1-x)+m_{i-1}^{(l)} \Phi_{1}(x)-m_{i}^{(l)} \Phi_{1}(1-x) \\
\left(l=0,1, \ldots, n ; x \in\left[x_{i-1}, x_{i}\right] ; i=1,2, \ldots, n-1\right) \tag{3.2}
\end{gather*}
$$

where

$$
\begin{align*}
& \Phi_{0}(x)=(1+2 t)(1-t)^{2} \\
& \Phi_{1}(x)=t(1-t)^{2} / n, \quad t=n\left(x-x_{i-1}\right) \tag{3.3}
\end{align*}
$$

(see, e.g., $[1,6]$). If $x \in\left[x_{i-1}, x_{i}\right]$, then $\Phi_{0}(x), \quad \Phi_{0}(1-x), \quad \Phi_{1}(x)$, $\Phi_{1}(1-x) \geqslant 0$, and

$$
\begin{aligned}
& \Phi_{0}(x)+\Phi_{0}(1-x)=1 \\
& \Phi_{1}(x)+\Phi_{1}(1-x) \leqslant 1 / 4 n
\end{aligned}
$$

With the help of Lemma 2.3 and (3.2) one can prove

$$
\begin{gathered}
\Lambda_{n}^{3}(x)=1+\alpha_{i, n} \Phi_{1}(x)-\beta_{i, n} \Phi_{1}(1-x) \\
\left(x \in\left[x_{i-1}, x_{i}\right] ; i=1,2, \ldots, n\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& \alpha_{i, n}=\sum_{l=0}^{i-1}(-1)^{i+l+1} m_{i-1}^{(l)}+\sum_{l=i}^{n}(-1)^{i+l} m_{i-1}^{(l)} \\
& \beta_{i, n}=\sum_{l=0}^{i-1}(-1)^{l+l+1} m_{i}^{(l)}+\sum_{l=i}^{n}(-1)^{i+l} m_{i}^{(l)}
\end{aligned}
$$

By virtue of (2.3) the above formulae simplify to

$$
\begin{align*}
& \alpha_{i, n}=\frac{6}{d_{n-1}} d_{i-2}\left(d_{n-i-1}+d_{n-i}\right) \\
& \beta_{i, n}=-\frac{6}{d_{n-1}} d_{n-i-1}\left(d_{i-2}+d_{i-1}\right) \quad(i=1,2, \ldots, n) . \tag{3.4}
\end{align*}
$$

Thus if $x \in\left[x_{i-1}, x_{i}\right]$, then the Lebesgue function $\Lambda_{n}^{3}(x)$ may be written as

$$
\begin{array}{r}
A_{n}^{3}(x)=1+\frac{6}{d_{n-1}}\left[a_{i}(1-t)+b_{i} t\right] t(1-t) \\
\left(t=n\left(x-x_{i-1}\right) ; i=1,2, \ldots, n\right) \tag{3.5}
\end{array}
$$

where

$$
\begin{align*}
& a_{i}=d_{i-2}\left(d_{n-i-1}+d_{n-i}\right), \\
& b_{i}=d_{n-i-1}\left(d_{i-2}+d_{i-1}\right) \quad(i=1,2, \ldots, n) . \tag{3.6}
\end{align*}
$$

Let $\lambda_{i}=\max _{x_{i-1} \leqslant x \leqslant x_{i}} \Lambda_{n}^{3}(x)(i=1,2, \ldots, n)$. From (3.5) and (3.6) we see that $\Lambda_{n}^{3}(x)=\Lambda_{n}^{3}(1-x)$. Hence $\lambda_{i}=\lambda_{n+1-i}(i=1,2, \ldots, n)$.

THEOREM 3.2. Let $\quad x_{i}=i / n, \quad\left(P_{n}^{3} f\right)\left(x_{i}\right)=f\left(x_{i}\right) \quad(i=0,1, \ldots, n)$, $\left(P_{n}^{3} f\right)^{\prime}(0)=\left(P_{n}^{3} f\right)^{\prime}(1)=0$. Then

$$
\begin{array}{rlrl}
\left\|P_{n}^{3}\right\| & =1+\frac{3}{2 d_{n-1}} d_{j-1}\left(d_{j-1}+d_{j}\right) & & \text { if } n=2 j+1 \quad(j=0,1, \ldots) \\
& =1+\frac{2}{9 d_{n-1}}\left[2 \delta^{3 / 2}+(3-\delta)\left(2 a_{j}+1\right)\right] & \text { if } n=2 j \quad(j=1,2, \ldots)
\end{array}
$$

where a_{j} is defined in (3.6) and $\delta=a_{j}^{2}+a_{j}+1$. Moreover,

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{j+1} ; \quad \lambda_{j+1}>\lambda_{j+2}>\cdots>\lambda_{n} \quad \text { if } \quad n=2 j+1
$$

and

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{j}=\lambda_{j+1} ; \quad \lambda_{j+1}>\lambda_{j+2}>\cdots>\lambda_{n} \quad \text { if } n=2 j
$$

Proof. According to Lemma 2.1 we have, by virtue of (3.6),

$$
\begin{align*}
a_{i+1}-a_{i} & =d_{n-2 i-1}+d_{n-2 i} & & \text { if } \quad 2 i \leqslant n \tag{3.7}\\
& =-\left(d_{2 i-n-1}+d_{2 i-n-2}\right) & & \text { if } \quad 2 i+1 \geqslant n .
\end{align*}
$$

Now we consider two cases. Let
1°. $n=2 j+1(j=0,1, \ldots)$. By virtue of (3.6) and (3.7) one gets

$$
\begin{aligned}
a_{i+1}-a_{i}>0 & \text { if } \quad i=1,2, \ldots, j \\
<0 & \text { if } \quad i=j+1, j+2, \ldots, n
\end{aligned}
$$

and

$$
\begin{aligned}
b_{i+1}-b_{i}>0 & \text { if } \quad i=1,2, \ldots, j \\
<0 & \text { if } \quad i=j+1, j+2, \ldots, n
\end{aligned}
$$

Thus

$$
\begin{equation*}
a_{1}<a_{2}<\cdots<a_{j+1} ; \quad a_{j+1}>a_{j+2}>\cdots>a_{n} \tag{3.8}
\end{equation*}
$$

and

Moreover, $a_{j+1}=b_{j+1}$.
By virtue of (3.5) and (3.8) we have

$$
\left\|P_{n}^{3}\right\|=\max _{x_{j} \leqslant x \leqslant x_{j+1}} \Lambda_{n}^{3}(x)=\Lambda_{n}^{3}\left(\frac{1}{2}\right)=1+\frac{3}{2 d_{n-1}} d_{j-1}\left(d_{j-1}+d_{j}\right)
$$

2°. $n=2 j(j=1,2, \ldots)$. Similarly to the previous case we can prove

$$
\begin{equation*}
a_{1}<a_{2}<\cdots<a_{j+1} ; \quad a_{j+1}>a_{j+2}>\cdots>a_{n} \tag{3.9}
\end{equation*}
$$

and

$$
b_{1}<b_{2}<\cdots<b_{j} ; \quad b_{j}>b_{j+1}>\cdots>b_{n}
$$

Moreover, $a_{j}=b_{j+1}$ and $a_{j+1}=b_{j}$. Hence $\left\|P_{n}^{3}\right\|=\max _{x_{j-1} \leqslant x \leqslant x_{j}} \Lambda_{n}^{3}(x)=$ $\Lambda_{n}^{3}\left(t^{*}\right)$. If $x \in\left[x_{j-1}, x_{j}\right]$ and $n=2 j$, then, from (3.6) and (3.5), one has

$$
\begin{equation*}
A_{n}^{3}(x)=1+\frac{6}{d_{n-1}}\left[a_{j}+\left(d_{j-1}^{2}-d_{j-2} d_{j}\right) t\right] t(1-t) \tag{3.10}
\end{equation*}
$$

From Lemma 2.1 one gets $d_{j-1}^{2}-d_{j-2} d_{j}=1$. The cubic polynomial $\left(a_{j}+t\right) t(1-t)$ attains its single maximum in the interval $[0,1]$ in the point t^{*}, where

$$
t^{*}=\left(\sqrt{\delta}-a_{j}+1\right) / 3 \quad\left(1 / 3<t^{*}<1 / 2\right)
$$

and δ is the same as above. With the help of (3.10) we obtain the desired result.

The last statement of the thesis follows immediately from (3.5), (3.8) and (3.9).

In Table I we give values of $\left\|P_{n}^{3}\right\|$ and $e_{n}:=\max _{1 \leqslant i \leqslant n} \lambda_{i}-\min _{1 \leqslant i \leqslant n} \lambda_{i}$ for small values of n.

Corollary 3.2. If P_{n}^{3} is defined as in Theorem 3.2, then

$$
\left\|P_{1}^{3}\right\|<\left\|P_{3}^{3}\right\|<\left\|P_{5}^{3}\right\|<\cdots<\left(1+3(3)^{1 / 2}\right) / 4=1.549038 \ldots
$$

TABLE I

n	$\left\\|P_{n}^{3}\right\\|$	e_{n}
1	1.0	0.0
2	1.222222	0.0
3	1.5	0.262963
4	1.522407	0.284312
5	1.545455	0.307284
6	1.547116	0.308939
7	1.548780	0.310603
8	1.548900	0.310723
9	1.549020	0.310843
10	1.549028	0.310851

4. Quintic Case

In this section we assume that the knots x_{i} are equidistant, i.e., $x_{i}=i / n$ for all $i=0,1, \ldots, n$. We give below an upper bound for the norm of the projection P_{n}^{s}, under the assumption that the spline function $s=P_{n}^{s} f$ satisfies the boundary conditions (1.1) or (1.2) for $q=3$. Let us denote $f_{j}=s\left(x_{j}\right)$, $m_{j}=s^{\prime}\left(x_{j}\right), \quad M_{j}=s^{\prime \prime}\left(x_{j}\right), \quad S_{j}=s^{\text {lv }}\left(x_{j}\right) \quad(j=0,1, \ldots, n)$. The first theorem follows.

Theorem 4.1. Let $x_{i}=i / n,\left(P_{n}^{s} f\right)\left(x_{i}\right)=f\left(x_{i}\right)(i=0,1, \ldots, n ; f \in C(I))$ and let $\left(P_{n}^{s} f\right)^{(j)}(0)=\left(P_{n}^{s} f\right)^{(j)}(1)=0$ for $j=1,2$. Then

$$
\left\|P_{n}^{3}\right\| \leqslant 18 \frac{73}{96} .
$$

Proof. It is known that the first derivatives m_{j} satisfy the following consistency relations:

$$
\begin{aligned}
& 227 m_{1}+79 m_{2}+3 m_{3}=n\left(-235 f_{0}+65 f_{1}+155 f_{2}+15 f_{3}\right), \\
& m_{j-2}+26 m_{j-1}+66 m_{j}+26 m_{j+1}+m_{j+2} \\
& \quad=5 n\left(-f_{j-2}-10 f_{j-1}+10 f_{j+1}+f_{j+2}\right) \quad(j=2,3, \ldots, n-2), \\
& 3 m_{n-3}+79 m_{n-2}+227 m_{n-1}=n\left(-15 f_{n-3}-155 f_{n-2}-65 f_{n-1}+235 f_{n}\right)
\end{aligned}
$$

(see, e.g., [9]). Let A denote the matrix of the above system of linear equations with unknowns $m_{j}\left(j=1,2, \ldots, n-1 ; m_{0}=m_{n}=0\right)$. Using the standard diagonal dominance argument we obtain $\left\|A^{-1}\right\|_{\infty} \leqslant 1 / 12$ (here $\|\cdot\|_{\infty}$ stands for the infinity norm of the square matrix). Now we take a function $f \in C(I)$ such that $\|f\|_{\infty} \leqslant 1$. Let $b=\left(b_{1}, b_{2}, \ldots, b_{n-1}\right)^{T}$, where b_{j}
denotes the right-hand side in the j th equation of the above system. It is obvious that

$$
\max _{1 \leqslant j \leqslant n-1}\left|b_{j}\right| \leqslant 470 n .
$$

Hence

$$
\begin{equation*}
\max _{0 \leqslant j \leqslant n}\left|m_{j}\right| \leqslant \frac{235}{6} n . \tag{4.1}
\end{equation*}
$$

Hoskins [9] proved that

$$
\begin{array}{r}
M_{j-1}-6 M_{j}+M_{j+1}=-20 n^{2}\left(f_{j-1}-2 f_{j}+f_{j+1}\right)+8 n\left(m_{j+1}-m_{j-1}\right) \\
\left(j=1,2, \ldots, n-1 ; M_{0}=M_{n}=0\right) .
\end{array}
$$

Similarly to that above one can prove

$$
\begin{equation*}
\max _{0<j<n}\left|M_{j}\right| \leqslant \frac{530}{3} n^{2} . \tag{4.2}
\end{equation*}
$$

For $x \in\left[x_{i-1}, x_{i}\right](i=1,2, \ldots, n)$ the quintic spline $P_{n}^{s} f$ may by written as

$$
\begin{align*}
\left(P_{n}^{s} f\right)(x)= & f_{i-1} \Phi_{0}(t)+f_{i} \Phi_{0}(1-t)+\left[m_{i-1} \Phi_{1}(t)-m_{i} \Phi_{1}(1-t)\right] / n \\
& +\left[M_{i-1} \Phi_{2}(t)+M_{i} \Phi_{2}(1-t)\right] / n^{2}, \tag{4.3}
\end{align*}
$$

where $t=n\left(x-x_{i-1}\right)$,

$$
\begin{align*}
& \Phi_{0}(x)=(1-x)^{3}\left(1+3 x+6 x^{2}\right), \\
& \Phi_{1}(x)=x(1-x)^{3}(1+3 x), \tag{4.4}\\
& \Phi_{2}(x)=x^{2}(1-x)^{3} .
\end{align*}
$$

From (4.4) we see that $\Phi_{i}(x), \Phi_{i}(1-x) \geqslant 0$ for $0 \leqslant x \leqslant 1$ and $i=0,1,2$. We also have

$$
\begin{align*}
& \Phi_{0}(x)+\Phi_{0}(1-x)=1, \\
& \Phi_{1}(x)+\Phi_{1}(1-x) \leqslant \frac{5}{16}, \tag{4.5}\\
& \Phi_{2}(x)+\Phi_{2}(1-x) \leqslant \frac{1}{32} \quad(0 \leqslant x \leqslant 1) .
\end{align*}
$$

Taking $f \in C(I)$ and such that $\|f\|_{\infty} \leqslant 1$ we obtain, by virtue of (4.1)-(4.3) and (4.5),

$$
\left|\left(P_{n}^{5} f\right)(x)\right| \leqslant 18 \frac{73}{96}
$$

Hence the desired result follows.
In the case when the boundary conditions (1.2) are imposed on the spline function $P_{n}^{5} f$ then the upper bound for the norm of this projection is given in the following

Theorem 4.2. Let $x_{i}=i / n, \quad\left(P_{n}^{5} f\right)\left(x_{i}\right)=f\left(x_{i}\right) \quad(i=0,1, \ldots, n ; f \in C(I))$ and let $\left(P_{n}^{5} f\right)^{(j)}(0)=\left(P_{n}^{5} f\right)^{(j)}(1)=0$ for $j=2,4$. Then

$$
\left\|P_{n}^{s}\right\| \leqslant \frac{21}{4}
$$

Proof. We only sketch the proof because it is quite similar to the proof of Theorem 4.1. The consistency relations for the fourth-order derivatives $S_{j}=s^{\text {IV }}\left(x_{j}\right)$ are

$$
\begin{aligned}
& 65 S_{1}+26 S_{2}+S_{3}=120 n^{4}\left(-2 f_{0}+5 f_{1}-4 f_{2}+f_{3}\right) \\
& \begin{aligned}
S_{j-2} & +26 S_{j-1}+66 S_{j}+26 S_{j+1}+S_{j+2} \\
& =120 n^{4}\left(f_{j-2}-4 f_{j-1}+6 f_{j}-4 f_{j+1}+f_{j+2}\right) \quad(j=2,3, \ldots, n-2) \\
S_{n-3} & +26 S_{n-2}+65 S_{n-1}=120 n^{4}\left(f_{n-3}-4 f_{n-2}+5 f_{n-1}-2 f_{n}\right)
\end{aligned}
\end{aligned}
$$

(see, e.g., [30]). Hence if $\|f\|_{\infty} \leqslant 1$ then

$$
\begin{equation*}
\max _{0 \leqslant j \leqslant n}\left|S_{j}\right| \leqslant 160 n^{4} \tag{4.6}
\end{equation*}
$$

We also have $M_{j}=n^{2}\left(f_{j-1}-2 f_{j}+f_{j+1}\right)-\left(S_{j-1}+8 S_{j}+S_{j+1}\right) / 120 n^{2}$ (see, e.g., [30]). By virtue of (4.6) one gets

$$
\begin{equation*}
\max _{0 \leqslant j \leqslant n}\left|M_{j}\right| \leqslant \frac{52}{3} n^{2} \tag{4.7}
\end{equation*}
$$

For $x \in\left[x_{i-1}, x_{i}\right](i=1,2, \ldots, n)$ the quintic spline $\left(P_{n}^{s} f\right)(x)$ may be written as

$$
\begin{align*}
\left(P_{n}^{5} f\right)(x)= & f_{i-1} \Psi_{0}(1-t)+f_{i} \Psi_{0}(t)+\left[M_{i-1} \Psi_{1}(1-t)+M_{i} \Psi_{1}(t)\right] / n^{2} \\
& +\left[S_{i-1} \Psi_{2}(1-t)+S_{i} \Psi_{2}(t)\right] / n^{4} \tag{4.8}
\end{align*}
$$

where $t=n\left(x-x_{i-1}\right)$,

$$
\begin{aligned}
& \Psi_{0}(x)=x \\
& \Psi_{1}(x)=\left(x^{3}-x\right) / 6 \\
& \Psi_{2}(x)=\left(x^{5}-x\right) / 120-\Psi_{1}(x) / 6
\end{aligned}
$$

We see that

$$
\begin{aligned}
& \Psi_{0}(x)+\Psi_{0}(1-x)=1 \\
& \left|\Psi_{1}(x)+\Psi_{1}(1-x)\right| \leqslant \frac{1}{8} \\
& \Psi_{2}(x)+\Psi_{2}(1-x) \leqslant \frac{5}{384}
\end{aligned}
$$

Hence and from (4.6)-(4.8) we obtain the desired result.

Acknowledgment

The author wishes to thank Dr. A. Pokrzywa of the Mathematical Institute, Polish Academy of Sciences, for helpful remarks on an earlier draft of this paper.

References

1. J. H. Ahlberg, E. N. Nilson. and J. L. Walsh, "The Theory of Splines and Their Applications," Academic Press. New York, 1967.
2. C. de Boor. "The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines." Ph.D. dissertation, University of Michigan, Ann Arbor, 1966.
3. C. De Boor, On bounding spline interpolation, J. Approx. Theory 14 (1975), 191-203.
4. C. de Boor, On cubic spline functions that vanish at all knots, Advan. Math. 20(1976). 1-17.
5. C. de Boor and I. J. Schoenberg, Cardinal interpolation and spline functions. Vili. The Budan-Fourier theorem for splines and applications, in "Spline Functions, Karslruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp. Eds.), pp. 1-79, Lecture Notes in Mathematics Vol. 501, Springer-Verlag, Berlin, 1976.
6. E. W. Cheney and F. Schurer, A note on the operators arising in spline approximation. J. Approx. Theory 1 (1968), 94-102.
7. S. Demko, Interpolation by quadratic splines, J. Approx. Theory 23 (1978). 392-400.
8. C. A. Hall and W. W. Meyer. Optimal error bounds for cubic spline interpolation. J. Approx. Theory 16 (1976), 105-122.
9. W. D. Hoskins, Algorithm 62. Interpolating quintic splines on equidistant knots. Comput. J. 13(1970), 437-438.
10. W. J. Kammerer, G. W. Reddien. and R. S. Varga. Quadratic interpolating splines. Numer. Math. 22 (1974), 241-259.
11. M. Marsden, Quadratic spline interpolation, Bull. Amer. Math. Soc. 80 (1974), 903-906.
12. M. Marsden, Cubic spline interpolation of continuous functions, J. Approx. Theory 10 (1974), 103-111.
13. G. Meinardus, Über die Norm des Operators der Kardinalen Spline-Interpolation, J. Approx. Theory 16 (1976), 289-298.
14. G. Meinardus, Periodische Spline-Funktionen, in "Spline Functions, Karlsruhe 1975" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 177-199, Lecture Notes in Mathematics Vol. 501, Springer-Verlag, Berlin, 1976.
15. G. Meinardus, Computation of the norms of some spline interpolation operators, in "Polynomial and Spline Approximation" (B. N. Sahney, Ed.), pp. 155-161, NATO Advanced Study Institute Series, Riedel, Dordrecht, 1979.
16. G. Meinardus and G. Merz, Zur periodischen Spline-Interpolation, in "SplineFuntionen" (K. Böhmer, G. Meinardus, and W. Schempp, Eds.), pp. 177-195. Bibliographisches Institut, Mannheim, 1974.
17. G. Meinardus and G. Merz, Zur periodischen Spline-Interpolation, II, in "Numerische Methoden der Approximationstheorie" (L. Collatz, G. Meinardus, and H. Werner, Eds.), Band 4, pp. 204-221, ISNM 42, Birkhäuser-Verlag, Basel, 1978.
18. G. Meinardus and G. D. Taylor, Periodic quadratic spline interpolant of minimal norm, J. Approx. Theory 23 (1978), 137-141.
19. G. Merz, Normen von Spline-Interpolationsoperatoren, in "Approximation in Theorie und Praxis" (G. Meinardus, Ed.), pp. 183-208, Bibliographisches Institut, Mannheim, 1979.
20. G. MERZ, Interpolation mit periodischen Spline-Funktionen II, J. Approx. Theory, in press.
21. E. Neuman, The inversion of certain band matrices, (in Polish), Mat. Stos. 9 (1977), 15-24.
22. E. Neuman, Bounds for the norm of certain spline projections, J. Approx. Theory 27 (1979), 135-145.
23. E. Neuman, Quadratic splines and histospline projections, J. Approx. Theory 29 (1980), 297-304.
24. F. B. Richards; Best bounds for the uniform periodic spline operator, J. Approx. Theory 7 (1973), 302-317.
25. F. B. Richards, The Lebesgue constants for cardinal spline interpolation, J. Approx. Theory 14 (1975), 83-92.
26. F. Schurer and E. W. Cheney, On interpolating cubic splines with equally-spaced nodes, Nederl. Akad. Wetensch. Proc. Ser. A 71 (1968), 517-524.
27. F. Schurer, A note on interpolating periodic quintic splines with equally spaced nodes, J. Approx. Theory 1 (1968), 493-500.
28. F. Schurer, A note on interpolating quintic spline fuctions, in "Approximation Theory" (A. Talbot, Ed.), pp. 71-81, Academic Press, London/New York, 1970.
29. J. Tzimbalario, On a class of interpolatory splines, J. Approx. Theory 23 (1978), 142-145.
30. R. A. Usmani and S. A. Warsi, Smooth spline solutions for boundary value problems in plate deflection theory, Comput. Math. Appl. 6 (1980), 205-211.

[^0]: * This paper was completed while the author was visiting at the Gesellschaft für Mathematik und Datenverarbeitung at St. Augustin, Federal Republic of Germany.

